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Study  region:  Heeia  watershed,  Oahu,  Hawaii,  USA.
Study  focus:  Hydrological  models  are  useful  tools for  assessing  the  impact  of  climate  change
in  watersheds.  We  evaluated  the  applicability  of the Soil  and  Water  Assessment  Tool  (SWAT)
model in  a case  study  of  Heeia,  Pacific-island  watershed  that  has  highly  permeable  volcanic
soils and  suffers  from  hydrological  data  scarcity.  Applicability  of  the model  was  enhanced
with  several  modifications  to  reflect  unique  watershed  characteristics.  The  calibrated  model
was then  used  to assess  the  impact  of rainfall,  temperature,  and  CO2 concentration  changes
on the  water  balance  of  the  watershed.
New  hydrological  insights  for  the  study  region: Compared  to continental  watersheds,  the
Heeia  watershed  showed  high  rainfall  initial  abstraction  due  to high  initial  infiltration
capacity  of  the  soils.  The  simulated  and observed  streamflows  generally  showed  a good
agreement  and satisfactory  model  performance  demonstrating  the  applicability  of  SWAT
for small  island  watersheds  with  large  topographic,  precipitation,  and  land-use  gradients.
The study  also  demonstrates  methods  to  resolve  data  scarcity  issues.  Predicted  climate
change scenarios  showed  that  the  decrease  in  rainfall  during  wet  season  and  marginal
increase  in  dry  season  are  the  main  factors  for  the  overall  decrease  in water  balance  com-
ponents. Specifically,  the  groundwater  flow  component  may  consistently  decrease  by as
much  as  15%  due  to  predicted  rainfall  and  temperature  changes  by  2100,  which  may  have
serious  implications  on  groundwater  availability  in  the  watershed.

©  2016  The  Author(s).  Published  by Elsevier  B.V.  This  is an  open  access  article  under  the
CC  BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Island communities, including those of the Hawaiian Islands, rely on local water resources, which may  be very sensitive
to climate change (Pulwarty et al., 2010). Yet, future prediction of the state of water resources at a scale of a typical island
watershed is hampered by the small geographical area of the island, which is not resolved in climate models, and by the

scarcity of hydrological data that are needed to capture variability within such a watershed. While the integrated assessment
of hydrology and climate has been getting increased attention in the field of hydrology and related disciplines (Wilby et al.,
2006), there are very few studies on expected changes in water budgets in small island watersheds (Safeeq and Fares, 2012).
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Evidence of climate change in Hawaii includes historical observations of temperatures and sea- level data, which show
ncreasing trend as a result of warming climate (Firing et al., 2004; Giambelluca et al., 2008; Diaz et al., 2011). Globally,
esearchers have reported that extreme climate change may  cause frequent incidents of flooding and drought, shortage of
ater supply, landslides, soil erosion, and damage to existing infrastructures (Beniston et al., 2007). Some of these problems
ave already been documented in Hawaii. For example, baseflow and streamflow of Hawaiian streams have showed a
ecreasing trend due to a combined effect of increasing groundwater withdrawals and lower precipitation (Oki, 2004;
assiouni and Oki, 2013).

Recent studies on climate change have shown that rainfall over the Hawaiian Islands is expected to decrease during
he nominal wet season (November to April) but marginally increase during the dry season (May to October) (Timm and
iaz, 2009; Timm et al., 2011). Given that approximately 70% of the annual rainfall happens during the wet  season, Hawaii

s expected to face an overall reduction in annual rainfall leading to a decline in sustainability of groundwater recharge
Burnett and Wada, 2014). In addition, Diaz et al. (2011) and Giambelluca et al. (2008) reported that air temperature in
he Hawaiian Islands is anticipated to increase in the future. Such an increase will influence components of the hydro-
ogic cycle as it drives evapotranspiration. Other factors negatively influencing water resources include population growth
http://uhero.prognoz.com/TableR.aspx) and water demand increase (Engott et al., 2015). With such expected problems,
limate change simulations and analysis of its anticipated impacts on hydrological processes are invaluable tools in the
esign and planning of mitigation measures to address the adverse consequences of climate change.

The general procedure for assessing the impacts of climate change on water resources and watershed processes is first to
roject plausible future climate change scenarios through the use of Global Climate Models (GCMs). Recently, different GCMs
f the Coupled Model Intercomparison Project Phase 5 (CMIP5) have been developed for future climate change projections,
hich are based on Representative Concentration Pathways (RCPs) of greenhouse gases by 2100 (IPCC, 2014). The GCMs
etermine the effects of changing concentrations of greenhouse gases on global climate variables, such as temperature,
ainfall, evapotranspiration, humidity, and wind speed. However, the direct use of GCMs’ outputs for local scale hydrologic
nalysis can result in inadequate model outputs, due to their coarse spatial and temporal resolutions (Elsner et al., 2010).
herefore, the results of the GCMs should be downscaled to either regional or local scale through the use of statistical
r dynamical downscaling techniques (Salathe et al., 2007; Timm and Diaz, 2009). In the following step, spatially semi-
istributed, physically-based hydrological models, such as the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998),
an be used to examine and assess the impacts of climate change (Bae et al., 2011). Due to its wide utility and applicability,
ifferent versions of SWAT have been used for several studies throughout the world (Krysanova and Arnold, 2008; Gassman
t al., 2014). SWAT has been used for hydrological modeling (Ndomba et al., 2008a,b; Thampi et al., 2010; Notter et al., 2012;
trauch et al., 2012; Kumar et al., 2014; Abbaspour et al., 2015; Leta et al., 2015; Nyeko, 2015; Yen et al., 2016), soil erosion
nd sediment transport modeling (Ndomba et al., 2008a,b; Betrie et al., 2011), climate change impact studies on streamflow
Githui et al., 2009; Mango et al., 2011), and land use change and management practices impact assessment on streamflow
nd sediment yield (Betrie et al., 2011; Mango et al., 2011). In addition, SWAT has been internationally used for tile-drain,
utrients transport, and pesticide modeling with (out) model modifications, especially in lowland agricultural watersheds
Koch et al., 2013; Moriasi et al., 2013; Bannwarth et al., 2014; Fohrer et al., 2014; Bauwe et al., 2016; Cho et al., 2016;
olmohammadi et al., 2016). The previous studies confirm the successful use of SWAT across a broad range of watershed
cales, environmental problems, hydrologic and pollutant conditions.

While previous studies on watershed hydrologic modeling focused on continental watersheds, there is a need to test
he applicability of SWAT for pacific island watersheds that are characterized by relatively small-scale, steep topography,
arge precipitation gradients, volcanic rock outcrops, and scarcity of data. These characteristics are typical for the Hawaiian

atersheds and there are only a few applications of other hydrological models (Sahoo et al., 2006; Apple, 2008; Safeeq and
ares, 2012), which were mainly focused on the dryer, leeward side of the island of Oahu, Hawaii. An exception is Apple
2008) who evaluated the applicability of Hydrologic Simulation Program-Fortran (HSPF) for Kaneohe watershed, which
s located in the wet, windward section of the island. She concluded that the HSPF model produced acceptable results for
nnual and monthly streamflow simulations, but daily streamflow predictions were not accurate. Thus, a need exists for
atershed model development in the windward, wet  side of the islands that will be very sensitive to climate change, as an

ssential task for an integrated water resources management, climate change impact assessment, and adaptive strategy to
limate change.

The specific objective of this study was to illustrate that a watershed model can be applied for water balance analysis
n highly permeable (volcanic soils) watershed with challenging characteristics not yet captured or addressed in existing
tudies and that a model can be applied for water balance analysis in future climate change scenarios. This study addressed
his objective in two steps:
a) evaluate the applicability and suitability of the SWAT model for streamflow simulations in Heeia under scarcity of
hydrological data;

) assess the impact of three different climate variables (rainfall, temperature, and CO2 concentration) change on the water
balance components in the watershed.

http://uhero.prognoz.com/TableR.aspx
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Fig. 1. Location of the Heeia watershed on Oahu Island (B), and geological formations of Heeia watershed (C).

2. Material and methods

2.1. Soil and Water Assessment Tool (SWAT) model

SWAT is a watershed-scale, physically-based, semi-distributed hydrologic model that operates on different time steps
(Arnold et al., 1998). A watershed is divided into a number of sub-basins that have homogeneous climatic conditions (Van
Liew et al., 2005). Sub-basins are further sub-divided into hydrological response units (HRUs) based on a homogenous
combination of land use, soil type, and slope value (Arnold et al., 2011). The SWAT model has been widely applied for
worldwide research dealing with hydrologic assessment, soil erosion/sediment transport, water quality analyses, climate
and land use changes, and watershed management impact studies (Gassman et al., 2007).

SWAT uses a water balance equation that includes precipitation, surface runoff, actual evapotranspiration, lateral flow,
percolation, baseflow, and deep groundwater losses components (Neitsch et al., 2011). The model applies a modification
of the Soil Conservation Service Curve Number (SCS-CN) method (USDA-SCS, 1986), which determines the surface runoff
based on the area’s hydrologic group, land use, and antecedent moisture content for each HRU.

In this study, the SCS-CN method for surface runoff simulations, the Penman-Monteith method for potential evapotran-
spiration estimation, and the variable storage routing method for daily streamflow routing were used. Penman-Monteith
method was selected due to its suitability for Hawaiian climatic conditions (Giambelluca et al., 2014). In addition, from the
three PET options offered by SWAT, this is the only method modified to account for the effects of CO2 concentration on leaf
stomatal conductance and evapotranspiration (Neitsch et al., 2011), which is important for climate change studies.

2.2. The study area

The Heeia watershed is located in the north-east, windward part of Oahu Island, Hawaii (Fig. 1, panel B). Main water uses
are related to public water supply, aquaculture, and cultural land-use practices (KBAC, 2007). In Hawaii, interaction among
trade winds, topography, thermal effects, and trade wind inversion provide the most varied rainfall patterns in the world.
The wet season (November to April) rainfall events are intensive, frequent, and generally produced by cooler trade winds
but often interrupted with mid-latitude frontal and southwest wind (Kona storms) systems (Chu and Chen, 2005). The dry
season (May to October) rainfall events are low, less frequent, and mainly formed by warmer trade winds that constantly
uplifts cumulus clouds towards the Islands from the ocean (Chu and Chen, 2005). The Heeia watershed covers an area of
11.5 km2 and receives annual average rainfall of 1800 mm.  However, due to persistent trade winds and orographic lifting of

moist air, the watershed experiences rainfall spatial variability over short distances, whereby regions of maximum rainfall
are located at the mountains (Giambelluca et al., 2013). Consequently, the annual average rainfall of the watershed varies
from 1205 to 3020 mm and increases with elevation at a rate of 4.5 mm m−1 (Giambelluca et al., 2013). This information was
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ig. 2. The Heeia Digital Elevation Model with hydro-meteorological stations (A), land use (B), soil type (C), and delineated sub-basins with corresponding
ow  gauging locations (D). Mauka station was not used in this study because it did not have available data for the investigated period.

sed to capture rainfall variability in the watershed hydrologic model. Elevation in the watershed ranges from 0 to 854 m
bove mean sea level, with an average slope of 40%.

The geological formations of the watershed are dominated by Koolau basalt (46%), followed by older alluvium (37%)
Sherrod et al., 2007). The Koolau basalt, which is characterized by very high hydraulic conductivity of up to 1500 m d−1 (Lau
nd Mink, 2006), largely covers the mountain region of the watershed (Fig. 1, panel C). The latter may  have significant effects
n the hydrological processes (e.g., groundwater recharge), with the Koolau ridge of the watershed receiving the highest
echarge. The land use in the watershed is dominated by forest (47%), followed by developed areas (27%), and shrub land
14%), whereas the remaining areas are covered by other land uses (grassland, dry coastal strand, herbaceous vegetation
nd water bodies) (Fig. 2, panel B). The watershed has 15 different soil types that were classified on the basis of the location
ames as well as hydraulic conductivity, water holding capacity, slope, and soil depth, such as Alaeloa, Hanalei, Kaneohe,
olekaa, Waikane silty clay soils. The model used this detail information, however, to simplify the display in Fig. 2, both
he original land use and soil data were grouped into major categories. The watershed top-soil layer is mainly covered by
olcanic silty clay soils that accounts for 76% of the watershed (Fig. 2, panel C). The rock outcrop, rock land, and rough
ountainous terrains that mainly occur at the crest and upstream part of the watershed, constitute 19%, while the other

oils (marsh, clay, silty clay loam, and clay loam) only account for 5% of the watershed (Fig. 2, panel C).

.3. Data

The ArcGIS compatible SWAT 2012 was built up based on the following data:

A 10 × 10 m Digital Elevation Model (DEM) obtained from the Department of Commerce (DOC), National Oceanic and
Atmospheric Administration (NOAA), Center for Coastal Monitoring and Assessment (CCMA);
1:24,000 scale soil maps from Soil Survey Geographic (SSURGO) database provided by the U.S. Department of Agriculture,
Natural Resources Conservation Service (USDA-NRCS);
A 30 × 30 m land use map  of the Landfire land cover of Hawaii, Wildland Fire Science, Earth Resources Observation, and
Science Center of the U.S. Geological Survey (USGS).
Daily rainfall data was obtained for the period of 2000 to 2013 from the Hawaii Institute of Marine Biology (HIMB) at
oconut Island (Dr. Kuulei Rodgers, personal communication, 2014). Rainfall data were also available from the USGS stations
t North Halawa Valley, the Halawa Tunnel and at Moanalua rain gauge number 1 (http://waterdata.usgs.gov/nwis/sw), and
rom the National Climatic Data Center (NCDC) of NOAA at Kanoehe station (http://www.ncdc.noaa.gov/cdo-web/datasets)

http://waterdata.usgs.gov/nwis/sw
http://www.ncdc.noaa.gov/cdo-web/datasets
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Fig. 3. Annual average rainfall data of stations in the vicinity of the Heeia watershed used in this study.

Table 1
The correlation coefficient values of daily rainfall data among the used stations. Bold signifies strong correlation.

Source Stations Correlation

Halawa valley Moanalua RG1 Kaneohe HIMB

USGS Halawa valley 1.00
USGS Moanalua RG1 0.87 1.00

NCDC Kaneohe 0.50 0.45 1.00
HIMB HIMB 0.49 0.46 0.73 1.00

USGS = U.S. Geological Survey;RG1 = Rain Gauge number 1; NCDC = National Climatic Data Center; HIMB = Hawaii Institute of Marine Biology.

(Fig. 2, panel A). While the other rainfall stations show high rainfall amount and consistently similar trends, the recorded
rainfall of 2004 and 2005 at Moanalua rain gauge station is very low (Fig. 3). Statistical analysis indicates that stations
on the leeward side (Halawa valley and Moanalua) have a stronger correlation compared to the windward side stations
(Kaneohe and HIMB) (Table 1). However, all correlation values show statistical significance (p < 0.05). At the same time, as
expected, there is a weak correlation between leeward and windward stations (Table 1), indicating less similarity in rainfall
values between windward and leeward gauges. Such variations are expected to have an appreciable effect on the watershed
hydrologic modeling and on the performance of watershed model and is an avoidable uncertainty introduced in the model.

Daily maximum and minimum temperatures as well as wind speed were obtained from the HIMB and Kaneohe stations.
The HIMB station had additional daily data for solar radiation. The geographically closest available records of daily relative
humidity were collected by the Western Region Climate Center (WRCC) (http://www.raws.dri.edu/wraws/hiF.html) at Oahu
Schofield East and Oahu Forest National Weather Research (NWR). A WatchDog 2000 Series (Spectrum Technologies, Inc.)
weather station was deployed for two years (2012–2013) at a wetland located at the coastal plain of Heeia (Fig. 2, panel A),
and is referred to hereafter as Heeia station.

Since a longer, continuous coverage of climatic data was available outside of the watershed boundary, a correlation
analysis was performed among the data (temperature, wind speed, solar radiation, and relative humidity) from Heeia and
those stations located outside the watershed. The purpose of the correlation analysis was  to fill the aforementioned missing
data in Heeia records. Those stations that had reasonable correlations (r2 > = 0.5) for daily values were used to fill the missing
data. For rainfall data, the recorded values at the four adjacent rain gauge stations of the watershed (Fig. 2, panel A) were
directly used for model input. In addition, the missing values were filled based on the monthly rainfall contour map  of the
Oahu Island with a contour interval of 50 mm based on the rainfall atlas of Hawaii (Giambelluca et al., 2013).

For model parameter optimization, daily streamflow data recorded at the Haiku station (USGS gauging code: 16275000)
and at the wetland flow sampling station were used. As streamflow data were not available at the coastal plain, total daily
streamflows at the coastal plain were estimated based on discharge measurements at the stream entry point to the Heeia
wetland (Fig. 2, panel A). Streamflow at the wetland station was  measured using a Pygmy flow meter for stream stages
ranging from 1 to 1.4 m,  over the year corresponding to 0.2 to 1 m3 s−1 in the period from May  to December 2013. During
each measurement, multiple discharge readings were taken across the stream to cover every 0.25 m of the stream for which
a cross section was also measured. A Solinst pressure depth sensor was installed to monitor the water level every 30 min
for the same period. The recorded water level was converted to streamflow by the USGS processing software (Ronald L.
Rickman, personal communication, 2015).

In order to estimate long term continuous streamflow data at the coastal plain, a scaling factor was derived between
the gauged streamflow at the Haiku and the corresponding measured values at the wetland for the overlapping period. The
scaling factor is biased because the measurements only covered low flow conditions and do not reflect variability of this

relationship due to changes in surface runoff and recharge with rainfall, including land use and topography. However, due
to the lack of appropriate data, the study opted to use the developed scaling factor at least to evaluate the simulated time
evolution of daily streamflow at the downstream location. Based on the analysis, the stream discharge at the wetland entry
was approximately 3 times the Haiku streamflow value. In addition, groundwater flow modeling studies for the watershed (K.

http://www.raws.dri.edu/wraws/hiF.html


G
i

2

m
(
t
a
(
c
(
t
t
w
a
a
t
i

2

t
C
o

a
p
a
u
S
t
C
u
s
a
s

2

t
w
S
e
B

2

o
(
t
p
d
f

i
2

O.T. Leta et al. / Journal of Hydrology: Regional Studies 8 (2016) 182–197 187

hazal, unpublished results, 2014) suggest a similar scaling factor. Hereafter, the downstream streamflow estimate location
s termed “wetland station”.

.4. Model set-up

SWAT model was built up based on the available geospatial data (DEM, land use and soil maps) and the hydro-
eteorological data. Using the DEM map  (Fig. 2, panel A), the Heeia watershed up to its mouth was  divided into 22 sub-basins

Fig. 2, panel D), and the sub-basins were further sub-divided into 1300 hydrological response units (HRUs), based on zero
hreshold values for land use, soil type, and slope class of the watershed. This enabled us to include these factors, which
re critical in assessing river basin management practice studies. Because of high topographic variability, 5 slope classes
maximum number of classes in SWAT) of 0–10%, 10–25%, 25–40%, 40–70% and >70% were defined, based on literature slope
lasses of the area (Kako’o’oiwi, 2011). Additionally, though the area of the study site is small, the number of sub-basins
compared to SWAT default) was increased to further capture the topographic variability of the watershed. Better represen-
ation of the watershed’s spatial variability is achieved with the increased number of sub-basins and thus HRUs. In addition,
he use of zero threshold value for HRUs classification facilitates a better assessment of the effect of land use change on the
ater balance components, which requires high resolution land use representation. Such land use scenarios are considered

s part of mitigation and adaptation techniques by the local community and include the conversion of the Heeia wetland into
 taro plantation to better mitigate floods and reduce sediment yield (Kako’o’oiwi, 2011). While this study did not address
hat change because SWAT does not include such a land use category in its current database, we  demonstrate that the model
s applicable in this watershed and it can be used for that purpose if data for taro plantation characteristics become available.

.5. Model calibration

Both manual and automatic parameter-optimization procedures were used in model calibration, with the latter utilizing
he Sequential Uncertainty Fitting (SUFI2) algorithm, as implemented in SWAT Calibration and Uncertainty Program (SWAT-
UP) (Abbaspour et al., 2007). The manual calibration was performed to fine tune the calibrated parameters, particularly to
btain a reasonable agreement for various water balance components.

To carry out the calibration processes, the SWAT model simulation period was  split into three segments, which encompass
 warming-up period (2000–2001) to initialize the state variables of the system (e.g the soil moisture content), a calibration
eriod (2002–2008), and a validation period (2009–2013). Seven years of streamflow records with a relatively high, normal,
nd low flow conditions were selected for the model calibration. Prior to calibration, a sensitivity analysis (SA) was performed
sing the Latin Hypercube-One-factor-At-a-Time (LH-OAT) technique as implemented in SWAT-CUP (Abbaspour et al., 2007).
A was carried-out only at the Haiku station considering that continuous observed daily streamflow data were only available
here. The minimum and maximum values of the SWAT parameters were fixed based on the ranges given in SWAT and SWAT-
UP (Abbaspour et al., 2007; Arnold et al., 2011). However, relative change (global multiplier) to the original values were
sed for a number of parameters that are spatially variable based on land use, soil type, and slope value. These include
urface runoff curve number (CN2), soil water holding capacity (SOL AWC), saturated soil hydraulic conductive (SOL K),
nd maximum canopy storage (CANMX). Then, the SWAT model was  calibrated using the parameters to which the model
howed high sensitivity.

.6. Model performance evaluation

Model calibration and validation should include multiple statistical evaluation criteria, considering that the single sta-
istical metrics only evaluates a specific part of model performance (Moriasi et al., 2007). The SWAT model performance
as evaluated through graphical comparison and by concurrently using six statistical criteria for goodness-of-fit: the Nash-

utcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), the percent bias (PBIAS) (Moriasi et al., 2007), the root mean square
rror (RMSE) (Sorooshian et al., 1993), the RMSE-observation standard deviation ratio (RSR) (Moriasi et al., 2007), the Mean
ias Error (MBE) (ASCE, 1996) and the correlation coefficient (r) (Legates and McCabe, 1999).

.7. Climate change scenarios

In this study, climate change scenarios were run based on the Intergovernmental Panel on Climate Change Special Reports
n Emission Scenarios (IPCC, 2007), and previous climate change studies and statistical downscaling for the Hawaiian Islands
Timm and Diaz, 2009; Diaz et al., 2011; Timm et al., 2011). The atmospheric concentration of carbon-dioxide is expected
o rise to levels between 550 ppm (B1 emission scenario) and 970 ppm (A1F1 emission scenario) (IPCC, 2007). It should be
ointed out here that this study utilized the IPCC (2007) report, the only available (during the study time) and statistically
ownscaled climate change ranges, which considered the Hawaiian local climate conditions, interactions, and topographic

eatures.

For an A1 B emission scenario, studies on climate change for Hawaii generally estimate a 10% decrease and 5% increase
n monthly rainfall for wet season (November to April) and dry season (May to October), respectively (Timm and Diaz,
009). The rainfall data of fourteen years (2000 to 2013) were perturbed to reflect these changes. The rainfall values were



188 O.T. Leta et al. / Journal of Hydrology: Regional Studies 8 (2016) 182–197

Table 2
SWAT parameter sensitivity to daily streamflow at the Haiku station. Acronyms are explained in Table 3.

Parameter t-stat p-value Parameter t-stat p-value

CN2 −50.247 0.000 REVAPMN −1.467 0.143
CH  K2 26.276 0.000 GWQMN  1.263 0.207
ALPHA  BF −15.732 0.000 SURLAG 1.213 0.226
ESCO  −4.936 0.000 SLSOIL −0.776 0.438
CH N2 3.595 0.000 HRU SLP −0.667 0.505
SOL  K −3.464 0.001 SOL Z 0.478 0.633
CANMX 2.204 0.028 RCHRG DP −0.448 0.655

OV  N 2.065 0.039 GW REVAP 0.202 0.840
SLSUBBSN 1.982 0.048 SOL AWC  −0.157 0.875
EPCO  1.968 0.050 GW DELAY −0.137 0.891

increased or decreased by multiplying by factors with a value of one means no change. During the dry season, a value of
1.05 was used, indicating 5% increase in rainfall compared to the historical data. Similarly, a change value of 0.9 was  used
during the wet season to reflect 10% decrease in rainfall amount compared with baseline values. The perturbation values
were implemented in SWAT’s sub-basin input files (Arnold et al., 2011). Also, studies of temperature trends on the Hawaiian
Islands suggest that temperature is expected to increase by ∼1 ◦C by the end of 21st century (Diaz et al., 2011; Safeeq
and Fares, 2012). Accordingly, the daily minimum and maximum temperature were increased in SWAT’s sub-basin files
for the period from 2000 to 2013. Additionally, to assess the effect of increase in CO2 concentration on evapotranspiration
and other water balance components, this concentration was increased from the default value of 330 ppm, signifying no
climate change effect (Neitsch et al., 2011), to 550 ppm (for B1 emission scenario). The effect of CO2 concentration change on
evapotranspiration manifests through the plant canopy resistance term of the Penman-Monteith method, which is calculated
as a function of leaf area index (LAI) and maximum effective leaf stomatal conductance (Neitsch et al., 2011). The maximum
effective leaf conductance is estimated based on CO2 value relative to the reference value of 330 ppm.

Three scenarios were formulated to illustrate the relative impact of the change of each climate variable on the water
balance components. Scenario S1 only considers the seasonal change in rainfall. Scenario S2 has the same rainfall as S1 but
also accounts for future temperature changes. Finally, scenario S3 combines rainfall, temperature, and CO2 concentration
changes.

3. Results and discussion

Initial calibration of the streamflow at Haiku station showed that, when the SCS-CN method was used, SWAT significantly
overestimated peak flows. In addition, decreasing the curve number at moisture condition II (CN2), even by 50% of the default
values, as well as modifying other surface runoff related parameters, did not improve the performance of the model and
resulted in a negative NSE (-0.92). The model performance was substantially improved by modifying SWAT’s source code
to double the initial abstraction (Ia) from 0.2S to 0.4S, where S represents the potential maximum soil retention. Such a
modification was justified considering the unique soil properties (e.g., high soil permeability) of the study site, which is
characterized by high initial infiltration capacity and low surface runoff (Lau and Mink, 2006). The results presented in this
study are based on the modified SWAT model.

3.1. Sensitivity analysis

The sensitivity analysis (Table 2) shows that, in general, CN2, CH K2, ALPHA BF, ESCO, SOL K, CANMX, CH N2, OV N,
SLSUBBSN, and EPCO are the most sensitive and important parameters for the watershed, as they show larger absolute
values of t-statistics and their p-values are significant at 5% level of significance (see Table 3 for parameters description).
The most sensitive parameter is the SCS curve number at moisture condition II (CN2), followed by the effective hydraulic
conductivity of the main channel (CH K2) (Table 1). The high sensitivity regarding CN2 was  expected as it is the primary
parameter that influences the amount of runoff generated from HRUs. The saturated soil hydraulic conductivity (SOL K) that
controls the lateral flow contribution to streamflow is also an important parameter. This should be expected because the
watershed is dominated by forested land use and highly permeable volcanic soils with steep topography and lateral flow
contribution is higher in the mountainous parts of the watershed. It is noticed that the base flow recession factor (ALPHA BF)
that could affect the shape of streamflow hydrograph, is identified as a parameter with a third sensitivity rank. This could be
partly explained by the quick recession and steep nature of the streamflow hydrograph due to presence of dikes in the shallow
aquifers of the mountainous area (Izuka et al., 1993), which is the specific characteristics of the Hawaiian watersheds. The
soil evaporation compensation factor (ESCO) and channel Manning’s roughness coefficient (CH N2) are found to be the 4th
and 5th ranked parameters, respectively. Such parameters could affect the surface runoff processes, evapotranspiration, and

the shape of streamflow hydrograph. Although the surface runoff lag coefficient parameter (SURLAG) is usually identified as
the most sensitive parameter for SWAT models of large-scale continental watersheds (Gassman et al., 2007), this parameter
does not play a significant role in the Heeia watershed. This is probably due to the small-scale, steep, and flashy nature of
the watershed that can cause most of the generated surface runoff to reach the watershed outlet in about one day. Thus, the
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Table  3
Optimized parameter values for the Haiku and the wetland sub-watersheds.

Parameter Description Unit Range Calibrated

Haiku Wetland

ALPHA BF Baseflow alpha factor day−1 0–1 0.001 0.016
CANMX Maximum canopy storagea mm 0–10 4.0–8.0 4.0–8.0
CH  K2 Effective hydraulic conductivity in main channel mmh−1 0–500 195.05 48.90
CH  N2 Manning’s rougness coefficient 0–1 0.03 0.03
CN2  Curve number at moisture condition IIb 35–98 35–62 37–79
ESCO Soil evaporation compensation factor 0.1–1 0.36 0.85
EPCO  Plant transpiration compensation factor 0.1–1 1.00 0.20
GW  DELAY Groundwater delay day 0–100 51.55 78.45
RCHRG DP Groundwater recharge to deep aquifer 0–1 0.05 0.01
GW  REVAP Groundwater revap coefficient 0.02–0.2 0.03 0.06
GWQMN  Minimum depth for groundwater flow ocurrence mm 0–5000 451.80 417.67
REVAPMN Minimum depth for groundwater revap ocurrence mm 0–500 85.02 64.09
SOL  Z Soil depthc mm 0–3500 630–2038 1073–2100
SOL K Saturated soil hydraulic conductivityc mmh−1 0–2000 26–77 21–86
SOL AWC  Soil water available capacityc 0–1 0.12–0.21 0.11–0.28
SURLAG Surface runoff lag coefficient day 0–10 1.50 1.50
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a Varies with land use, but urban land use is zero.
b Varies with land use, soil & slope.
c Varies with soil type.

urface runoff lag is not relevant for such watershed and the lower sensitivity of the SURLAG parameter clearly reflects this
ehavior (Table 2).

.2. Streamflow calibration

Overall, the estimated SWAT parameter values are physically reasonable for the watershed (Table 3). For example, the
URLAG is close to one as expected because the watershed is small and the time of concentration is around one day so that
ost of the surface runoff could reach the main channel on the day it is generated (Green and van Griensven, 2008). The CN2

arameter is relatively elevated in the downstream part of the basin, which could be related to intensive urbanization in that
art of the watershed. However, the derived curve number values with the streamflow data are relatively low compared to
eported values (Gassman et al., 2007), but are consistent with the study of Lau and Mink (2006). Since the upstream part is
ostly covered by forest, the water use from the deeper soil profile is expected to be high in forest-covered land (Strauch

nd Volk, 2013). The higher EPCO and lower ESCO values in the upstream part of the watershed clearly illustrate this effect.
The ALPHA BF value at Haiku station is 0.007 as estimated by the baseflow filter program (Arnold and Allen, 1999).

owever, during the calibration process, it was found that if this value is directly used for the upstream of Haiku, the simulated
ow flows slowly receded compared to observations. This indicates that the ALPHA BF value obtained from baseflow filtering
s too high and appeared to be inappropriate for SWAT, providing poor calibration. The calibrated value in the upstream of
aiku as shown in Table 3 of 0.001 is considerably lower than 0.007. The discrepancy between the value derived by baseflow
lter program and SWAT may  be due to the empirical nature of the former method and its lack of realistic representation
f the watershed characteristics (Furey and Gupta, 2001; Leta, 2013; Leta et al., In press). The filter cannot, for example
onsider the presence of recurrent dikes in the shallow aquifer of the upstream part (Izuka et al., 1993) that essentially act as

 natural barrier to baseflow and significantly reduce the groundwater flow to stream reach. In contrast, SWAT is physically
ased where the parameter values that represent the processes are expected to be well estimated (Migliaccio and Chaubey,
008). According to Izuka et al. (1993), the upstream part of Heeia has more dikes in the shallow aquifer but these are not
revalent in the downstream part of the watershed. This can cause slow response to groundwater recharge. Consequently,
he shallow aquifer groundwater slowly discharges into stream resulting in a slower depletion of groundwater and longer
aseflow days (Okuhata, 2015). The lower ALPHA BF value in the upstream part of the watershed likely reflects this effect.

.3. Annual water balance

The annual observed and simulated water balance components for the calibration period (2002–2008) are summarized
n Table 4 for the Haiku and the wetland stations. The observed total streamflow was  divided into surface and baseflow using

 baseflow filter program (Arnold and Allen, 1999). Note that the baseflow of Table 4 includes the lateral flow.
When compared to observations, the simulated water balance components in the upper watershed were overestimated

ven after the model code modification for Ia. This could be partly explained by the soil properties of rock outcrops, which

over 23% of the modeled area. For this soil type, the SSURGO database reported zero available water holding capacity
SOL AWC  in SWAT). However, for the same soil type, Safeeq and Fares (2012) reported a water holding capacity of 0.42 at
eld capacity (FC) and 0.34 at wilting point (WP), indicating that the SOL AWC  of rock outcrop is actually different from zero.
his observation is also reasonable as the area is covered by shrubs and grassland. Accordingly, when the SOL AWC, which
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Table 4
Average annual observed and simulated water balance components (in mm)  for the calibration period (2002–2008) at the Haiku and the wetland stations
sub-watersheds.

Station Type Rainfall Streamflow Surface runoff Baseflow Evapotranspiration

Haiku observed 3106 994 237 758
simulated 1259 223 981 1468
PBIAS[%] 29 −13 44

Wetland observed 2217 972 296 675

simulated 958 290 644 1094
PBIAS[%] −1 −1 −5

is the difference between FC and WP  was set to 0.08 (= 0.42 − 0.34) and the model re-ran for the calibration process, results
improved significantly. For example, the NSE almost doubled from 0.34 to 0.54. Also, peak flows, which were overestimated
in the previous scenario, were now significantly decreased. As the SOL AWC  value obtained from the literature provides
more reasonable hydrograph and water balance components, this value was used in further analysis.

For the Haiku station, while the surface runoff (SR) is underestimated by the model, the baseflow (BF) is considerably over-
estimated (PBIAS of 44). The overestimation of BF could be related to groundwater withdrawal at the rate of ca.1300 m3 d−1

in upstream of the Haiku station, which was not taken into account in the model. In addition, as it was discussed earlier, the
overestimation might be due to the empirical nature of the baseflow filter program that lacks realistic representation of the
watershed characteristics, in contrast to the SWAT results, which are estimated by simulating physically based watershed
processes. However, the total streamflow (SF) is still overestimated with a positive model bias of 29%. At the wetland sta-
tion, the water balance components are well represented by the model. Comparable model performance is reported for the
validation period.

For the watershed outlet, the SWAT simulated average annual subsurface flow component is 538 mm,  which is 70% of
the annual streamflow (773 mm),  during the calibration period. As streamflow measurements were not available at the
outlet of the watershed, the model results were compared with the filtered flow, which is 69% of total streamflow at the
Haiku station. Furthermore, the fraction indicates that the subsurface flow contribution is larger than surface flow for the
watershed. The simulated averaged annual streamflow (SF) of 773 mm approximately accounts for 41% of annual average
rainfall (1900 mm),  whereas the annual average actual evapotranspiration (AET) accounts for 52% (996 mm)  during the
calibration period. Though there were no available measured AET rates at our study site, our ET results were in line with
rates reported for the Island of Oahu (Giambelluca et al., 2009; Safeeq and Fares, 2012). Also, the annual average rainfall
contributes 27% (511 mm)  to the groundwater system as recharge. The simulated recharge is close to the value (483 mm)
reported by Engott et al. (2015) for the study area, although the latter estimated annual recharge based on synthetic daily
rainfall values that were calculated by disaggregating monthly rainfall data. Overall, our simulated recharge is within the
range (18–43%) of the findings reported for the Hawaiian Islands, as summarized by Safeeq and Fares (2012).

In general, the SWAT simulated water balance components are consistent with previous studies for the island, although
those studies mainly focused on the dryer, leeward side. As the water balance components of the watershed are fairly
represented by SWAT, it is concluded that the model is appropriate for different climate change scenario and management
practice studies.

3.4. Daily streamflow

The calibrated and validated SWAT results of streamflow data at two gauging stations are provided in Table 5. The table
also reports the goodness-of-fit statistics for different periods of calibration and validation in order to facilitate periods/events
based model evaluation. However, for the sake of clear visualization, we will only discuss and show results for three years
of streamflow hydrographs for both the calibration and the validation periods.

Generally, SWAT reasonably tracks the trends of the hydrograph and its temporal variability (Figs. 4 and 5). For the
calibration period of the Haiku station, SWAT tends to underestimate some peak flows in the 2006 to 2008 period. On the
other hand, the model simulates a number of peak values that are not consistent with the respective measured low values
(Fig. 4, panel B). Additional calculations showed that some of the underestimated peak flows in certain periods cannot be
corrected without further overestimating the certain peak flows between 2006 and 2008. Therefore, further calibrating and
forcing the model under limited climate data would not provide fruitful results. Since there has been a negligible land-use
change for the study period, it is concluded that the lack of consistent rainfall data causes these discrepancies in the model.
As the model is very sensitive to rainfall input (Fig. 4), it is likely that the weak performance of the model for a certain
period, including the underestimation of some peak and low flows, is due to a lack of well-represented rainfall amounts
for the watershed. For example, the peak flow event of 2003, when the highest streamflow was recorded during the dry

season, does not correspond to a peak rainfall event recorded in the neighboring watershed. Such a behavior is due to rainfall
spatial variability over short distances, which did not enable the existing rain gauges to capture the local storms that caused
the peak flow event of 2003. At the same time, in contrast to the calibration period, the model highly overestimated some
peak flows of the validation period. This is clearly seen especially for the daily rainfall amount of approximately 200 mm d−1
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Fig. 4. The daily rainfall of 2006–2008 (A) and 2011–2013 (C), with the corresponding simulated and observed streamflows at Haiku during the calibration
(B)  and validation (D) periods.

Fig. 5. The daily rainfall of 2006–2008 (A), and 2011–2013 (C) with the corresponding simulated and observed streamflows at the Heeia wetland during
the  calibration (B) and validation (D) periods.
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Table 5
Goodness-of-fit statistics for the daily streamflow simulation at the Haiku and the wetland stations. The bold values represent overall performance.

Station Period time span NSE RSR PBIAS[%] RMSE[m3/s] MBE[m3/s] r

Haiku Calibration 2002–2003 0.59 0.64 −49.56 0.08 −0.03 0.81
2004–2005 0.44 0.75 −23.66 0.07 −0.02 0.71
2006–2008 0.53 0.69 15.62 0.08 0.01 0.76
2002–2008 0.54 0.68 −13.17 0.08 −0.01 0.75

Validation 2009–2010 0.22 0.88 −21.44 0.09 −0.01 0.64
2011–2013 0.39 0.78 45.89 0.09 0.04 0.75
2009–2013 0.35 0.81 25.24 0.08 0.02 0.67

Wetland Calibration 2002–2003 0.68 0.56 −42.34 0.18 −0.07 0.85
2004–2005 0.52 0.70 −29.19 0.17 −0.06 0.77
2006–2008 0.64 0.60 6.17 0.17 0.01 0.8
2002–2008 0.63 0.61 −17.22 0.17 −0.03 0.80

Validation 2009–2010 0.64 0.60 −30.86 0.22 −0.07 0.82
2011–2013 0.41 0.77 −17.80 0.31 −0.04 0.71
2009–2013 0.49 0.71 −23.00 0.28 −0.05 0.74
NSE = Nash-Sutcliff efficiency; RSR = root mean squared error to observation standard deviation; PBIAS = percent bias; RMSE = root mean squared error;
MBE  = mean bias error; r = correlation coefficient.

and above (Fig. 4, panel C). Consequently, a maximum daily streamflow of 320 mm d−1 is simulated by the model with a
corresponding rainfall amount of 540 mm d−1, while the observations show a maximum streamflow of 71 mm d−1 (Fig. 4,
panel D).

In the downstream part of the watershed, the performance of the model is somewhat improved during the calibration
period (Fig. 5, panel B). As compared to the Haiku station, the peak flows are well represented at the wetland station. In
contrast to the Haiku validation, the wetland peak flows are systematically underestimated, except the peak flow event of
2013 (Fig. 5, panel D), which is caused by high rainfall amount (ca. 540 mm d−1). But the results of the downstream part
should be interpreted with caution as streamflows were derived from the application of a linear scaling factor to the Haiku
streamflow observations. For example, the scaling factor bias for the observed peak flows is clearly seen in Fig. 5 where the
observed peak flows are systematically overestimated as compared to the simulated ones. This suggests that the constant
scaling factor of 3 might be high for the wet season’s streamflows.

As it can be seen from Table 5, during the calibration period, the overall model performance for the daily streamflow
simulation is “satisfactory” based on NSE values but “good to very good” for the other metrics (Moriasi et al., 2007). However,
considering the period 2002 to 2003, while NSE is slightly increased at both stations, a lower performance is noticed in
terms of PBIAS (Table 5), which is partly explained by a systematic underestimation of low flows of this period. It should
be noted here that since NSE uses sum of squared residuals, it gives more weight to the difference in peak flows than low
flows while PBIAS treats both values equally. Thus, the high NSE and PBIAS values in 2002 to 2003 (low flows dominated
period) at both stations reflect such characterization despite the fact that the model systematically underestimates the low
flows. At the Haiku station, a lower performance is also observed during the validation period (2009–2013), resulting in an
“unsatisfactory” model performance in terms of NSE, which is mainly due to the overestimated peak flow events (Fig. 4,
panel D). Nevertheless, based on Moriasi et al. (2007), the other statistical metrics still show “satisfactory to good” ranking
except the PBIAS of 2011 to 2013 (Table 5).

In general, the low performance of the model for certain periods of calibration and validation could be related to the lack
of a good quality and well represented rainfall data, a fact that has been well documented by Strauch et al. (2012). Evidence
of low rainfall data quality for our case study is also clearly seen in Fig. 3. Fig. 3 clearly shows that the recorded rainfall
amounts of 2004 and 2005 at Moanalua station are very low compared to the other stations. The Moanalua station has been
operating since 1978 and is located in remote (mountain) area, it is suspected, thus, that this station might be old and poorly
maintained. Incidentally, more than 80% of the Haiku sub-watershed used the rainfall data from this station. To correct for
this, rainfall data for the period 2004 to 2005 were replaced by records from Halawa valley, which is located close to the
Moanalua station in the mountainous area and also showed significantly strong correlation (Table 1). Such an action resulted
in a much better representation of peak flows, which were severely underestimated when the recorded rainfall data from
Moanalua were used.

Overall, findings suggest the suitability of SWAT for hydrological modeling of a small-scale, typical Hawaiian watershed,
under scarcity of climate data. In addition, when compared to the large-scale continental watershed studies, the accuracy of
our model was fairly comparable. For example, Ndomba et al. (2008a) reported similar performance for daily streamflows
in terms of NSE for watershed from northeast Tanzania and linked the low performance of their model to scarcity of data.
Mango et al. (2011) who  used SWAT for both monthly streamflow simulations and climate-land use scenario analysis in
Mara river basin (Kenya), reported negative NSE values when two  nearby rain gauging stations were used. Nevertheless, their

model performance was considerably improved when they used satellite-based estimated rainfall data. Although SWAT is
commonly expected to show better performance for coarser time step (e.g., week, month), the monthly streamflow results
of Mango et al. (2011) still indicate lower performance compared to our daily results. The latter contrast is encouraging and
highlights the applicability of SWAT in Heeia watershed.
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Table  6
Parameters of the three climate change scenarios.

Scenario Rainfall (%) Temperature (◦C) CO2 (ppm)

Wet  season Dry season

S1 −10 5 – 330
S2  −10 5 1.1 330
S3  −10 5 1.1 550

Table 7
The minimum, maximum, and average relative change of annual water balance components relative to the baseline case. Bold values represent average
relative change.

Scenario Relative change [%]

Variable Rainfall SF SR LF BF Recharge AET PET

S1 Minimum −5.8 −11.9 −16.9 −8.4 −12.3 −12.6 −1.5 0.0
Maximum −2.2 −3.4 0.4 −3.3 −4.9 −4.2 0.1 0.0
Average −4.0 −7.7 −10.6 −5.4 −7.4 −7.3 −0.6 0.0

S2 Minimum −5.8 −13.8 −17.5 −8.6 −15.9 −16.6 −0.4 3.2
Maximum −2.2 −5.2 −1.1 −4.1 −6.9 −6.4 2.7 3.9
Average −4.0 −9.4 −11.4 −6.1 −10.0 −10.0 1.0 3.5

S3 Minimum −5.8 −6.8 −15.8 −5.7 −4.2 −5.5 −5.4 −6.1
Maximum −2.2 0.6 3.6 −1.3 2.9 3.5 −3.6 −5.2
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Average −4.0 −3.4 −8.1 −3.4 −0.8 −0.8 −4.6 −5.6

F = Streamflow; SR = Surface Runoff; LF = Lateral flow; BF = Baseflow; AET = Actual Evapotranspiration; PET = Potential Evapotranspiration.

This study certainly confirms that additional and better rain and streamflow data are needed to improve the model
o better represent some low and peak flows. The need for additional rainfall data is startling, considering the small size
f the watershed that is characterized by a very strong rainfall gradient. However, assessing the relative response of the
atershed’s water balance components to various climate change scenarios are of great interest and should be valuable,

ven with modeling uncertainties.

.5. Climate change scenarios

.5.1. Annual water balance
Three climate change scenarios (S1, S2, and S3) as summarized in Table 6 were used to assess the sensitivity of water bal-

nce components to future predicted changes. In general, the predicted annual average water balance components decreased
n comparison to the baseline, irrespective of the applied scenario (Table 7). The annual relative change also showed a decreas-
ng trend, except for actual and potential evapotranspiration, which revealed a relative decrease or increase depending on
he applied scenario. Hence, the annual water balance components are generally projected to decrease in the future. How-
ver, for a few years, the annual groundwater recharge is projected to increase (maximum of 4%) for scenario S3 (Table 7)
ecause of the likely decrease in evapotranspiration. It can be concluded that the 10% decrease in rainfall during wet season
nd 5% increase during dry season are the main factor for the overall decrease in annual water budgets for this watershed.

.5.2. Monthly water balance
Depending on the applied scenario, the monthly water balance components showed different responses in seasonal

hanges. For the S1 scenario, an increase of dry season rainfall by 5% and a decrease by 10% in wet  season are expected to
ead to a maximum decrease in surface runoff by 21% in January. Also, the largest both positive and negative changes are
bserved for the surface runoff component, followed by groundwater recharge (Fig. 6). This indicates the high sensitivity of
urface runoff and groundwater recharge to rainfall input. Moreover, a more pronounced change in water budget is observed
uring the wet season (November to April), indicating a higher sensitivity of water balance components to rainfall change
Fig. 6). An interesting observation from Fig. 6 is that both streamflow and baseflow will consistently decrease for the S1
cenario, irrespective of the direction of the shift in seasonal rainfall change. This could be related to a larger decrease in
ainfall during the wet season but an increase in AET during the dry season. Also reflected in this is the fact that the response
f baseflow to rainfall change is significantly delayed by about two  months, which has an impact on baseflow contribution
o total streamflow. Overall, the decrease in baseflow and thus streamflow, is consistent with previous findings by Oki
2004) and Bassiouni and Oki (2013) who reported generally decreasing trends in historical streamflow in Hawaii, including

he Heeia watershed. Of interest is the fact that climate change scenarios were run only for 14 years with findings that
onsistently agree with Safeeq and Fares (2012) who  ran climate change scenarios for 43 years in the leeward side of Oahu.
his shows that our impact assessment can provide useful information on water balance perturbation without accounting
or long-term climate change projections despite data scarcity.
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Fig. 6. Percent change in monthly water balance components as a result of climate change scenarios S1 (perturbed rain), S2 (rain & temperature), S3 (rain,
temperature, & CO2) relative to the baseline.

For the S2 scenario, an increase in temperature is expected to cause a larger decrease in water balance components as a
result of an increase in AET, especially during the dry season. For example, in April, a change in ET of −3% (for S1) vs −1% (for
S2) resulted in a decrease in recharge of −16% and −19%, respectively. In comparison to the S1 scenario, a more pronounced
change for both baseflow and groundwater recharge is observed for the S2 scenario (Fig. 6). Finally, the high sensitivity of
baseflow to temperature change, and thus the considerable impact of evapotranspiration on the baseflow component, is
clearly demonstrated by a larger % change in S2 in comparison to S1 (Fig. 6).

While similar directional changes can be observed for the S1 and S2 scenarios, elevated CO2 concentrations are expected
to considerably affect both potential and actual evapotranspiration. When the CO2 emission of S2 is increased from 330 ppm
to 550 ppm, a slight increase in streamflow is predicted during the dry season (Fig. 6). This is most likely due to a consistent
decrease in actual evapotranspiration and plant leaf stomatal conductance (Safeeq and Fares, 2012). A noticeable increase
in recharge is also predicted for the S3 scenario, particularly during the dry season (e.g., maximum 24% in August) as a
consequence of a decrease in AET and small increase in rainfall.

4. Conclusions

Based on the available geospatial and hydro-meteorological data, a SWAT model was developed for the integrated river
basin management of the Heeia watershed. Contrasting to mainland, large-scale continental watersheds, applications should
reflect the watershed’s small size, typical soil properties, and high topographic variability. In addition, a modification in the
model is necessary to capture the unique volcanic soil properties that is characterized by a larger initial abstraction value
than the value commonly utilized in model applications of continental watersheds.
A sensitivity analysis (SA) identified the top five sensitive parameters for the watershed, namely, SCS curve number at
soil moisture condition II (CN2), main channel effective hydraulic conductivity (CH K2), baseflow alpha factor (ALPHA BF),
channel Manning’s roughness coefficient (CH N2), and soil evaporation compensation factor (ESCO). Although a surface
runoff lag coefficient (SURLAG) is commonly identified as a sensitive parameter in large scale continent watersheds, this



p
c

s
fl
w
i
w
s
a
s

b
b
w
T
i
r
s

s
w
c
c
e

C

A

H
N
P
T
a
9

R

A

A

A

A

A

A

A

B

B

B

B

B

O.T. Leta et al. / Journal of Hydrology: Regional Studies 8 (2016) 182–197 195

arameter did not play an important role for the study site. Overall, the SA findings are consistent with the watershed
haracteristics.

The calibration and validation procedures estimated water balance components and daily streamflow that generally
howed “satisfactory” model performance, though the model underestimated some peak flow events, including the low
ows of a certain period. At the same time, the model simulated some peak flows that happened during intensive rainfall
hile the corresponding observed flows showed low values. The quality of existing rainfall data from the nearby stations

s questionable and the use of such data may  not adequately represent the local climate variability and distribution in the
atershed. Thus, accounting for rainfall data variability is of paramount importance, which is startling considering the small

ize of the watershed in the order of 11.5 square kilometers. Further improvement in modeling can be achieved if good quality
nd well-represented climate data are used. Installation of hydro-meteorological stations to capture variability within the
tudy site would help any future studies.

To illustrate the usefulness of the developed model, SWAT was then used for climate change impact assessment on water
alance. The projected different climate change scenarios showed both increasing and decreasing trends in monthly water
alance components except baseflow, which showed decreasing trend. However, it is expected that the net annual average
ater balance components will generally be negative, indicating more limited water availability for the Heeia watershed.

he water balance components were more sensitive to rainfall change as compared to temperature change and increase
n CO2 concentrations. More importantly, the groundwater flow component will be negatively impacted by the projected
ainfall and temperature changes. It is thus concluded that the projected scenarios may  adversely affect the groundwater
ustainability of the watershed and the ecological functioning of the riparian system.

Lastly, the adapted SWAT model together with the example application demonstrated the usefulness of the model, despite
ome limitations of climate data, as a tool for assessing water resources availability in the Hawaiian and similar islands,
here volcanic outcrops exist, and climate and hydrological data scarcity commonly prevail. Further, assessing climate

hange scenarios provide useful information for evaluating the future freshwater availability and designing appropriate
limate change mitigation measures. Relative response of the watershed to various climate change scenarios are valuable,
ven with modeling uncertainties.
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